PDF Text Extractor API

The PDF to Text API is a simple solution for converting PDF files into text or words. It allows users to quickly and easily extract plain text from a PDF, making it a convenient tool for text analysis, data extraction, and document processing.

About the API: 

The PDF to Text API provides a fast and reliable solution for converting PDF files into plain text or words. This API allows users to extract the text content from a PDF document, making it ideal for various use cases such as text analysis, data extraction, and document processing.

The API utilizes advanced technologies to accurately convert PDF files into text, preserving the format and structure of the original document. The resulting text can be easily manipulated and analyzed, providing users with valuable insights and information.

The API is simple to use and can be integrated into existing workflows, eliminating the need for manual data entry and saving time and resources. The API is designed to handle a wide range of PDF files, including those with complex layouts and formatting, making it a versatile tool for a variety of applications.

In addition to being fast and reliable, the PDF to Text API is also secure and protected, ensuring the privacy and security of user data. With this API, businesses and organizations can quickly and easily extract text from PDF files, streamlining their operations and gaining valuable insights.

 

What this API receives and what your API provides (input/output)?

Pass the publicly accessible PDF URL and receive the text recognized in it. 

 

What are the most common uses cases of this API?

  1. Text Analysis: The API can be used to extract text from PDFs and perform text analysis, such as sentiment analysis, keyword extraction, and topic modeling.

  2. Data Extraction: The API allows users to extract data from PDFs, such as tables, lists, and forms, for use in spreadsheets and databases.

  3. Document Processing: The API can be used to convert PDFs into editable text, making it easier to manipulate and process documents for various purposes.

  4. E-book Conversion: The API can be used to convert PDFs into plain text, making it easier to create e-books and other digital content.

  5. Language Translation: The API can extract text from PDFs written in different languages, making it easier to translate documents for global audiences.

Are there any limitations to your plans?

Besides the number of API calls, there are no other limitations

API Documentation

Endpoints


Pass the PDF URL and receive the extracted text. 



                                                                            
POST https://zylalabs.com/api/1341/pdf+text+extractor+api/1122/pdf+to+text
                                                                            
                                                                        

PDF to Text - Endpoint Features

Object Description
Request Body [Required] Json
Test Endpoint

API EXAMPLE RESPONSE

       
                                                                                                        
                                                                                                                                                                                                                            {"pages_text_array":["Introduction to Big DataLearning ObjectivesAt the end of this text, you should present the  following learnings: Define big data.Discuss the Vs of big data and implications.Point out the  types of data related to big data.IntroductionSince the beginning, man  has stored data for  himself and for others, through drawings on the rocks and rock art. This record was made with  the aim of making some decision or enabling access to knowledge. As societies became more  complex, the volume of data storage This led to the  construction of libraries and the later  invention of printing by Johannes Gutenberg around 1450. The abacus itself, a mechanical  instrument of Chinese origin created in the 5th century BC, stored information about numbers  and helped with computing. Later,  the emergence of the internet for information exchange,  during World War II and the Cold War (1945\u01521991), made it even more necessary data  storage for further analysis. Over time, various ways of storing this information were  developed: mainframes, floppy  disks, tapes, hard drives, NAS (Network -Attached Storage),  cluster environment, pen drives, CDs, DVDs. In modern society, data began to be produced  from different sources, whether in social networks (photos, videos, messages), in online  purchases, in deli very applications, in distance education courses, in transactions with  currencies and digital banks. In addition, there was the replacement of roles, such as physical  agenda, medical records, request for exams, for the digital context.       In this sense, companies realized the value of storing and processing strategic data. Thus, the  new power race became clear: data started to be seen as the new oil. As a result, we can  observe a gradual growth in the production and storage of data througho ut history, until we  reach the context of big data. In this chapter, you will study the concept and characteristics  inherent to big data. the main types of data that are related to context.1 The data society and  what defines big dataModern culture started to produce and store more data. With a  computer or a smartphone in our hands, we now have access to a greater volume of  information. Thus, the massive growth of sending photos, videos, audio and text messages  made the social relationship become digital. It  was in this scenario that the concept of big data  emerged. According to Mauro, Greco and Grimaldi (2015, online document, our translation),  big data is defined as follows: \ufb01Big Data represents information assets characterized by high  volume, speed and var iety, which require specific technologies and analysis methods to be  transformed in value [...]\ufb02.From the growth of hundreds of Terabytes of data, the context of  big data began to be systematized.The definition of this term is based on five principles: spe ed,  volume, variety, veracity and value .You will see that such principles always go together in this  context. Thus, big data is a broad term that deals with several areas and composes the various  related studies. In the academic area, departments were cre ated focused on engineering and  data science. , in order to compose the sets of knowledge and studies that the area demanded.  Soon, several professions related to this area also emerged. The data engineer deals with  acquisition, storage and disposal strate gies. level of data. The data scientist and the machine  learning engineer (in English, machine learning) make up the context of exploratory analysis,  pattern recognition and predictive analysis, as well as other related contexts. similar to  software engine ering DevOps, but focused on the context of the data.Introduction to big data2      ","The exponential production of data with the internet of thingsThe internet of things has  emerged with remarkable potential, causing the context of connected devices to exponen tially  increase agricultural production produces voluminous data every second, with monitoring in  the chicken coop, monitoring the temperature and ambient humidity, among others. As a  result, a large volume of data is produced. The production of refrigerat ors, air conditioners,  fans, electric pans and other connected devices made daily life permeated by the internet of  things .Thus, with so much data produced, it is necessary to organize a storage and processing  structure for decision making. The term \ufb01inte rnet of things\ufb02 refers to the interconnection of  intelligent devices, which produce, consume and transmit data. make up the context, in  addition to several boards and embedded systems.The production of data by peopleThe  biggest producers of given Away     s in the world are human beings themselves. Previously, each could only create small notes for  themselves or within a small group. Now, we have a massive online file sharing environment at  our disposal. As we walk, we produce data through of our GPS positions, which are transmitted  in real time via applications. Our speech produces data that is analyzed by virtual assistants. If  we are hospitalized, our breathing will produce data, through sensors, for the medical record.  the use of social networks is increasing , generating immense amounts of data. The sending of  daily e -mails with advertisements and for closing deals, the allocation of photos of travel in the  cloud and several other situations of our daily life generate data, in tremendous volume and  speed.So, i n the age of big data, to live is to produce data.3Introduction to big data       The production of public data by governmentsGovernments also produce a tremendous range  of data, on the most diverse fronts: health, infrastructure, transport, education, tourism ,  economy, bids, contracts, among others. Federal Government website and are commonly  consumed by entities that In addition, the market seeks to carry out, from this data, various  predictive analyses. On the other hand, governments also use each other's da ta, 2 The Vs of  big data and its impact on technologies and society Big data has changed the way companies  see their data. Currently, each piece of information about their own business and customer  has become crucial in decision making. In the academic con text, more and more processing  and data analysis. In this sense, the characteristics of big data and its five Vs showed the  systematization of the context, offering a vision of how studies and technological solutions  should be. those proposed for the area.  See below for more information on each of these  aspects.Volume The reference to the size of the data produced and the need to store it  encompasses the volume of big data. Currently, we are not talking about Terabytes, but about  Zettabytes or of Brotonbyte s.Speed The speed in data production can be seen, for example,  from the perspective of social networks, where we have millions of messages exchanged per  minute.Imagine that a million people sent 10 messages only in the morning, that is, in the first  six hours of your day. In that case, we would already have Introduction to big data4      ","10 million pieces of data to be stored. The reality, however, is much greater. The production of  data is fast, whether in monitoring, through sensors, or in the data that pe ople themselves  produce. VarietyThe multiplicity of file types within of big data is, in fact, a punctual  characteristic. When we started to produce, mostly, digital data, we transformed physical tasks  into online data. This data can be agendas, purchase o rders and deliveries, sending text  messages , audio, video and image. This variety can be composed and stored, for example, in  the HDFS file structure of Apache Hadoop, and managed by its various services, such as Hive,  Hbase, Spark, among others. Veracity The composition of the veracity of the data in big data is  a characteristic part of data quality and continuous improvement. We cannot use data that do  not represent the problem or that have a bias. In this context, data science deals with cleaning  and org anizing the data, in order to increase the framework for the context of data quality  comes from The Dama guide to the data management body of knowledge that help in data  governance.ValorThe first step that occurred in big data was the need to store the dat a, for  only later see what to do with them. This was because it was realized that, with the rise of  predictive analytics, having a lot of data about a given context could be invaluable. .The use of  data for companies was already used in business intelligen ce, which became known for the  theories of the data warehouse and the respective specificities, with techniques to create data  structures and enter the dashboards. However, predictive analysis has gained immense  importance , since everyone wants to predict  the future based on several variables in a  context.5Introduction to big data       Other VsAccording to Taleb, Serhani and Dssouli (2019), there are still other Vs involved. Some  of them are variability, which consists of the constant change of security issue s. Data ingestion  and storage in Apache HadoopData can take different forms. structured as spreadsheets, in  ERP systems, they can be semi -structured or unstructured, like data from social networks, or  they can come from a network of wireless sensors that p roduce information such as  temperature, humidity or pressure (Figure 1).Figure 1.The various data types of  "],"pdf_complete_text":"Introduction to Big DataLearning ObjectivesAt the end of this text, you should present the  following learnings: Define big data.Discuss the Vs of big data and implications.Point out the  types of data related to big data.IntroductionSince the beginning, man  has stored data for  himself and for others, through drawings on the rocks and rock art. This record was made with  the aim of making some decision or enabling access to knowledge. As societies became more ...
                                                                                                                                                                                                                    
                                                                                                    

PDF to Text - CODE SNIPPETS


curl --location --request POST 'https://zylalabs.com/api/1341/pdf+text+extractor+api/1122/pdf+to+text' --header 'Authorization: Bearer YOUR_API_KEY' 

--data-raw '{
    "url_pdf": "https://halo-pro.com/pdfingles.pdf"
}'

    

API Access Key & Authentication

After signing up, every developer is assigned a personal API access key, a unique combination of letters and digits provided to access to our API endpoint. To authenticate with the PDF Text Extractor API REST API, simply include your bearer token in the Authorization header.
Headers
Header Description
Authorization [Required] Should be Bearer access_key. See "Your API Access Key" above when you are subscribed.

Simple Transparent Pricing

No long term commitments. One click upgrade/downgrade or cancellation. No questions asked.

πŸš€ Enterprise

Starts at
$ 10,000/Year


  • Custom Volume
  • Specialized Customer Support
  • Real-Time API Monitoring

Customer favorite features

  • βœ”οΈŽ Only Pay for Successful Requests
  • βœ”οΈŽ Free 7-Day Trial
  • βœ”οΈŽ Multi-Language Support
  • βœ”οΈŽ One API Key, All APIs.
  • βœ”οΈŽ Intuitive Dashboard
  • βœ”οΈŽ Comprehensive Error Handling
  • βœ”οΈŽ Developer-Friendly Docs
  • βœ”οΈŽ Postman Integration
  • βœ”οΈŽ Secure HTTPS Connections
  • βœ”οΈŽ Reliable Uptime

Zyla API Hub is like a big store for APIs, where you can find thousands of them all in one place. We also offer dedicated support and real-time monitoring of all APIs. Once you sign up, you can pick and choose which APIs you want to use. Just remember, each API needs its own subscription. But if you subscribe to multiple ones, you'll use the same key for all of them, making things easier for you.

Prices are listed in USD (United States Dollar), EUR (Euro), CAD (Canadian Dollar), AUD (Australian Dollar), and GBP (British Pound). We accept all major debit and credit cards. Our payment system uses the latest security technology and is powered by Stripe, one of the world’s most reliable payment companies. If you have any trouble paying by card, just contact us at [email protected]

Additionally, if you already have an active subscription in any of these currencies (USD, EUR, CAD, AUD, GBP), that currency will remain for subsequent subscriptions. You can change the currency at any time as long as you don't have any active subscriptions.

The local currency shown on the pricing page is based on the country of your IP address and is provided for reference only. The actual prices are in USD (United States Dollar). When you make a payment, the charge will appear on your card statement in USD, even if you see the equivalent amount in your local currency on our website. This means you cannot pay directly with your local currency.

Occasionally, a bank may decline the charge due to its fraud protection settings. We suggest reaching out to your bank initially to check if they are blocking our charges. Also, you can access the Billing Portal and change the card associated to make the payment. If these does not work and you need further assistance, please contact our team at [email protected]

Prices are determined by a recurring monthly or yearly subscription, depending on the chosen plan.

API calls are deducted from your plan based on successful requests. Each plan comes with a specific number of calls that you can make per month. Only successful calls, indicated by a Status 200 response, will be counted against your total. This ensures that failed or incomplete requests do not impact your monthly quota.

Zyla API Hub works on a recurring monthly subscription system. Your billing cycle will start the day you purchase one of the paid plans, and it will renew the same day of the next month. So be aware to cancel your subscription beforehand if you want to avoid future charges.

To upgrade your current subscription plan, simply go to the pricing page of the API and select the plan you want to upgrade to. The upgrade will be instant, allowing you to immediately enjoy the features of the new plan. Please note that any remaining calls from your previous plan will not be carried over to the new plan, so be aware of this when upgrading. You will be charged the full amount of the new plan.

To check how many API calls you have left for the current month, look at the β€˜X-Zyla-API-Calls-Monthly-Remaining’ header. For example, if your plan allows 1000 requests per month and you've used 100, this header will show 900.

To see the maximum number of API requests your plan allows, check the β€˜X-Zyla-RateLimit-Limit’ header. For instance, if your plan includes 1000 requests per month, this header will display 1000.

The β€˜X-Zyla-RateLimit-Reset’ header shows the number of seconds until your rate limit resets. This tells you when your request count will start fresh. For example, if it displays 3600, it means 3600 seconds are left until the limit resets.

Yes, you can cancel your plan anytime by going to your account and selecting the cancellation option on the Billing page. Please note that upgrades, downgrades, and cancellations take effect immediately. Additionally, upon cancellation, you will no longer have access to the service, even if you have remaining calls left in your quota.

You can contact us through our chat channel to receive immediate assistance. We are always online from 8 am to 5 pm (EST). If you reach us after that time, we will get back to you as soon as possible. Additionally, you can contact us via email at [email protected]

To let you experience our APIs without any commitment, we offer a 7-day free trial that allows you to make API calls at no cost during this period. Please note that you can only use this trial once, so make sure to use it with the API that interests you the most. Most of our APIs provide a free trial, but some may not support it.

After 7 days, you will be charged the full amount for the plan you were subscribed to during the trial. Therefore, it’s important to cancel before the trial period ends. Refund requests for forgetting to cancel on time are not accepted.

When you subscribe to an API trial, you can make only 25% of the calls allowed by that plan. For example, if the API plan offers 1000 calls, you can make only 250 during the trial. To access the full number of calls offered by the plan, you will need to subscribe to the full plan.

 Service Level
100%
 Response Time
796ms

Category:

OCR

Related APIs