La API de la Tabla Periódica es una herramienta poderosa para cualquiera que trabaje o investigue en química, ciencia de materiales o campos relacionados. Esta API proporciona una interfaz simple y fácil de usar para acceder a información sobre los elementos químicos. La API incluye información básica sobre cada elemento, como su nombre, símbolo y número atómico. Además, la API proporciona el punto de fusión y el punto de ebullición de cada elemento, lo que facilita la comparación y contraste entre diferentes elementos.
Además de la información básica, la API de la Tabla Periódica también ofrece un endpoint más detallado para cada elemento. Este endpoint permite a los usuarios recuperar información más profunda sobre un elemento específico ingresando su nombre. Esta información detallada incluye una imagen del elemento, una descripción y puntos de fusión y ebullición específicos.
En general, la API de la Tabla Periódica es un recurso valioso para cualquiera que trabaje en el campo de la química o la ciencia de materiales. La API proporciona una forma conveniente y fácil de usar para acceder a información sobre las propiedades de varios elementos químicos. Esto puede ser especialmente útil para investigadores, educadores o cualquier persona que necesite acceder rápida y fácilmente a información sobre elementos químicos.
Puede recibir un parámetro y proporcionarte un JSON.
Fines educativos: Los estudiantes y educadores pueden utilizar la API para aprender más sobre los elementos químicos y sus propiedades.
Investigación: Los investigadores pueden utilizar la API para estudiar las propiedades de diferentes elementos químicos y comparar sus puntos de fusión y ebullición.
Ciencia de materiales: Los ingenieros y científicos de materiales pueden utilizar la API para comprender mejor las propiedades de los materiales y cómo se comportan a diferentes temperaturas.
Fabricación química: Los fabricantes de productos químicos pueden utilizar la API para identificar y comparar las propiedades de diferentes elementos químicos utilizados en sus productos.
Comunicación científica: Los comunicadores de ciencia y periodistas pueden utilizar la API para proporcionar información precisa y actualizada sobre elementos químicos y sus propiedades al público.
Juegos: Los desarrolladores de juegos pueden utilizar la API para crear juegos educativos y cuestionarios que enseñen a los jugadores sobre elementos químicos.
Software de química: Los desarrolladores de software de química pueden utilizar la API para integrar información sobre elementos químicos y sus propiedades en sus aplicaciones.
Proyectos personales: Los aficionados y entusiastas del bricolaje pueden utilizar la API para aprender más sobre elementos químicos y sus propiedades para proyectos personales.
Procesos industriales: Los ingenieros químicos y químicos industriales pueden utilizar la API para optimizar procesos industriales que involucren elementos químicos con puntos de fusión y ebullición específicos.
Análisis de datos: Los analistas y científicos de datos pueden utilizar la API para recopilar información sobre elementos químicos para fines de investigación y análisis de datos.
Plan Básico: 5,000 Llamadas a la API.
Plan Pro: 10,000 Llamadas a la API.
Plan Pro Plus: 50,000 Llamadas a la API.
Plan Elite: 100,000 Llamadas a la API.
Para usar este endpoint, solo ejecútalo y obtendrás todos los elementos disponibles.
[
{
"alloys": "",
"atomicMass": "1.00794(4)",
"atomicNumber": "1",
"atomicRadius": "37",
"block": "s",
"boilingPoint": "20",
"bondingType": "diatomic",
"cpkHexColor": "FFFFFF",
"crystalStructure": "hexagonal close-packed",
"density": "8.99E-5",
"electronAffinity": "-73",
"electronegativity": "2.2",
"electronicConfiguration": "1s1",
"facts": "Element containing no neutron, Lightest element, Lightest gas in the atmosphere, Lowest b.p., Lightest radio-isotope (Tritium - <sup>3</sup><sub>1</sub>H), Element with minimum no. of isotopes",
"group": "1",
"groupBlock": "nonmetal",
"ionRadius": "",
"ionizationEnergy": "1312",
"isotopes": "<sup>1</sup>H (99.98%) , <sup>2</sup>H (0.02%), <sup>3</sup>H (trace)",
"magneticOrdering": "dimagnetic",
"meltingPoint": "14",
"molarHeatCapacity": "28.836",
"name": "Hydrogen",
"oxidationStates": "-1, 1",
"period": "1",
"speedOfSound": "1310",
"standardState": "gas",
"symbol": "H",
"vanDelWaalsRadius": "120",
"yearDiscovered": "1766",
"minerals": "",
"history": "The name derives from the Greek word hydro for water and genes for forming because it burned in air to form water. Hydrogen was discovered by the English physicist Henry Cavendish in 1766.<br/>Scientists had been producing hydrogen for years before it was recognized as an element. Written records indicate that Robert Boyle produced hydrogen gas as early as 1671 while experimenting with iron and acids. Hydrogen was first recognized as a distinct element by Henry Cavendish in 1766.Composed of a single proton and a single electron, hydrogen is the simplest and most abundant element in the universe. It is estimated that 90% of the visible universe is composed of hydrogen."
},
{
"alloys": "",
"atomicMass": "4.002602(2)",
"atomicNumber": "2",
"atomicRadius": "32",
"block": "s",
"boilingPoint": "4",
"bondingType": "atomic",
"cpkHexColor": "D9FFFF",
"crystalStructure": "hexagonal close-packed",
"density": "1.785E-4",
"electronAffinity": "0",
"electronegativity": "",
"electronicConfiguration": "1s2",
"facts": "Highest ionisation potential",
"group": "18",
"groupBlock": "noble gas",
"ionRadius": "",
"ionizationEnergy": "2372",
"isotopes": "<sup>3</sup>He (0.0002%) , <sup>4</sup>He (99.9998%)",
"magneticOrdering": "dimagnetic",
"meltingPoint": "",
"molarHeatCapacity": "20.78",
"name": "Helium",
"oxidationStates": "",
"period": "1",
"speedOfSound": "972",
"standardState": "gas",
"symbol": "He",
"vanDelWaalsRadius": "140",
"yearDiscovered": "1868",
"minerals": "",
"history": "The name derives from the Greek helios for sun. The element was discovered by spectroscopy during a solar eclipse in the sun's chromosphere by the French astronomer Pierre-Jules-Cesar Janssen in 1868. It was independently discovered and named helium by the English astronomer Joseph Norman Lockyer.<br/>Helium was thought to be only a solar constituent until it was later found to be identical to the helium in the uranium ore cleveite by the Scottish chemist William Ramsay in 1895. The Swedish chemists Per Theodore Cleve and Nils Abraham Langet independently found helium in cleveite at about the same time.<br/>Helium, the second most abundant element in the universe, was discovered on the sun before it was found on the earth. Pierre-Jules-César Janssen, a French astronomer, noticed a yellow line in the sun's spectrum while studying a total solar eclipse in 1868. Sir Norman Lockyer, an English astronomer, realized that this line, with a wavelength of 587.49 nanometers, could not be produced by any element known at the time. It was hypothesized that a new element on the sun was responsible for this mysterious yellow emission. This element was named helium by Lockyer.The hunt to find helium on earth ended in 1895. Sir William Ramsay, a Scottish chemist, conducted an experiment with a mineral containing uranium called clevite. He exposed the clevite to mineral acids and collected the gases that were produced. He then sent a sample of these gases to two scientists, Lockyer and Sir William Crookes, who were able to identify the helium within it. Two Swedish chemists, Nils Langlet and Per Theodor Cleve, independently found helium in clevite at about the same time as Ramsay.<br/>Helium makes up about 0.0005% of the earth's atmosphere. This trace amount of helium is not gravitationally bound to the earth and is constantly lost to space. The earth's atmospheric helium is replaced by the decay of radioactive elements in the earth's crust. Alpha decay, one type of radioactive decay, produces particles called alpha particles. An alpha particle can become a helium atom once it captures two electrons from its surroundings. This newly formed helium can eventually work its way to the atmosphere through cracks in the crust."
},
{
"alloys": "",
"atomicMass": "6.941(2)",
"atomicNumber": "3",
"atomicRadius": "134",
"block": "s",
"boilingPoint": "1615",
"bondingType": "metallic",
"cpkHexColor": "CC80FF",
"crystalStructure": "body-centered cubic",
"density": "0.535",
"electronAffinity": "-60",
"electronegativity": "0.98",
"electronicConfiguration": "[He] 2s1",
"facts": "Most reactive solid element, Lightest solid metal, It behaves as superconductor below T<sub>C</sub> 4 X 10<sup>-4</sup>.",
"group": "1",
"groupBlock": "alkali metal",
"ionRadius": "76 (+1)",
"ionizationEnergy": "520",
"isotopes": "<sup>6</sup>Li (7.59%) , <sup>7</sup>Li (92.41%)",
"magneticOrdering": "paramagnetic",
"meltingPoint": "454",
"molarHeatCapacity": "24.860",
"name": "Lithium",
"oxidationStates": "1",
"period": "2",
"speedOfSound": "6000",
"standardState": "solid",
"symbol": "Li",
"vanDelWaalsRadius": "182",
"yearDiscovered": "1817",
"minerals": "",
"history": "The name derives from the Latin lithos for stone because lithium was thought to exist only in minerals at that time. It was discovered by the Swedish mineralogist Johan August Arfwedson in 1818 in the mineral petalite LiAl(Si2O5)2. Lithium was isolated in 1855 by the German chemists Robert Wilhelm Bunsen and Augustus Matthiessen.<br/>Lithium was discovered in the mineral petalite (LiAl(Si2O5)2) by Johann August Arfvedson in 1817. It was first isolated by William Thomas Brande and Sir Humphrey Davy through the electrolysis of lithium oxide (Li2O). Today, larger amounts of the metal are obtained through the electrolysis of lithium chloride (LiCl). Lithium is not found free in nature and makes up only 0.0007% of the earth's crust.<br/>Lithium is the lightest of all metals, with a density only about half that of water."
},
{
"alloys": "",
"atomicMass": "9.012182(3)",
"atomicNumber": "4",
"atomicRadius": "90",
"block": "s",
"boilingPoint": "2743",
"bondingType": "metallic",
"cpkHexColor": "C2FF00",
"crystalStructure": "hexagonal close-packed",
"density": "1.848",
"electronAffinity": "0",
"electronegativity": "1.57",
"electronicConfiguration": "[He] 2s2",
"facts": "",
"group": "2",
"groupBlock": "alkaline earth metal",
"ionRadius": "45 (+2)",
"ionizationEnergy": "900",
"isotopes": "<sup>7</sup>Be (trace) , <sup>9</sup>Be (100%) , <sup>10</sup>Be (trace)",
"magneticOrdering": "diamagnetic",
"meltingPoint": "1560",
"molarHeatCapacity": "16.443",
"name": "Beryllium",
"oxidationStates": "2",
"period": "2",
"speedOfSound": "",
"standardState": "solid",
"symbol": "Be",
"vanDelWaalsRadius": "",
"yearDiscovered": "1798",
"minerals": "",
"history": "The name derives from the Greek word beryllos for beryl, a gemstone in which it is found (3BeO×Al2O3×6SiO2).Beryllium was discovered by the French chemist and pharmacist Nicholas-Louis Vauquelin in beryl and emerald in 1797. The element was first separated in 1828 by the French chemist Antoine-Alexandre-Brutus Bussy and independently by the German chemist Friedrich Wöhler. Because the salts of beryllium have a sweet taste, the element was also known as glucinium from the Greek glykys for sweet, until IUPAC selected the name beryllium in 1949.<br/>Although emeralds and beryl were known to ancient civilizations, they were first recognized as the same mineral (Be3Al2(SiO3)6) by Abbé Haüy in 1798. Later that year, Louis-Nicholas Vauquelin, a French chemist, discovered that an element was present in emeralds and beryl. Attempts to isolate the new element finally succeeded in 1828 when two chemists, Friedrich Wölhler of Germany and A. Bussy of France, independently produced beryllium by reducing beryllium chloride (BeCl2) with potassium in a platinum crucible. Today, beryllium is primarily obtained from the minerals beryl (Be3Al2(SiO3)6) and bertrandite (4BeO·2SiO2·H2O) through a chemical process or through the electrolysis of a mixture of molten beryllium chloride (BeCl2) and sodium chloride (NaCl)."
},
{
"alloys": "",
"atomicMass": "10.811(7)",
"atomicNumber": "5",
"atomicRadius": "82",
"block": "p",
"boilingPoint": "4273",
"bondingType": "covalent network",
"cpkHexColor": "FFB5B5",
"crystalStructure": "rhombohedral",
"density": "2.46",
"electronAffinity": "-27",
"electronegativity": "2.04",
"electronicConfiguration": "[He] 2s2 2p1",
"facts": "Element having highest tensile strength, Lightest solid non-metal",
"group": "13",
"groupBlock": "metalloid",
"ionRadius": "27 (+3)",
"ionizationEnergy": "801",
"isotopes": "<sup>10</sup>B (20%) , <sup>11</sup>B (80%)",
"magneticOrdering": "diamagnetic",
"meltingPoint": "2348",
"molarHeatCapacity": "11.087",
"name": "Boron",
"oxidationStates": "1, 2, 3",
"period": "2...
curl --location --request GET 'https://zylalabs.com/api/1494/periodic+table+api/1234/fetch+all+elements' --header 'Authorization: Bearer YOUR_API_KEY'
Encabezado | Descripción |
---|---|
Autorización
|
[Requerido] Debería ser Bearer access_key . Consulta "Tu Clave de Acceso a la API" arriba cuando estés suscrito. |
Sin compromiso a largo plazo. Mejora, reduce o cancela en cualquier momento. La Prueba Gratuita incluye hasta 50 solicitudes.
El endpoint "Obtener Todos los Elementos" devuelve una lista de todos los elementos químicos con propiedades básicas, mientras que el endpoint "Obtener Elemento Por Nombre" proporciona información detallada sobre un elemento específico, incluyendo su nombre, símbolo, número atómico, puntos de fusión y ebullición, y una descripción.
Los campos clave incluyen el número atómico, nombre, símbolo, masa atómica, punto de fusión, punto de ebullición y configuración electrónica. Para respuestas detalladas, se incluyen campos adicionales como descripción y URL de la imagen.
Los datos de respuesta están estructurados en formato JSON. El endpoint "Obtener todos los elementos" devuelve un arreglo de objetos de elementos, cada uno conteniendo múltiples propiedades. El endpoint "Obtener elemento por nombre" devuelve un solo objeto con atributos detallados para el elemento especificado.
El punto final "Obtener todos los elementos" proporciona propiedades básicas de todos los elementos, mientras que el punto final "Obtener elemento por nombre" ofrece detalles en profundidad, incluidas propiedades físicas, descripciones e imágenes de elementos individuales.
Los usuarios pueden personalizar las solicitudes especificando el nombre del elemento en el endpoint "Fetch Element By Name". Para el endpoint "Fetch All Elements", no se necesitan parámetros, ya que recupera todos los elementos por defecto.
Los datos provienen de literatura científica y bases de datos reputables que recopilan información sobre elementos químicos, asegurando precisión y fiabilidad para fines educativos y de investigación.
Los casos de uso típicos incluyen recursos educativos para estudiantes, comparaciones de investigación de propiedades de elementos, aplicaciones de ciencia de materiales e integración en software de química o juegos para un aprendizaje interactivo.
Los usuarios pueden utilizar los datos analizando la respuesta JSON para extraer propiedades relevantes para el análisis, la comparación o la exhibición en materiales educativos, aplicaciones de software o informes de investigación.
Zyla API Hub is like a big store for APIs, where you can find thousands of them all in one place. We also offer dedicated support and real-time monitoring of all APIs. Once you sign up, you can pick and choose which APIs you want to use. Just remember, each API needs its own subscription. But if you subscribe to multiple ones, you'll use the same key for all of them, making things easier for you.
Prices are listed in USD (United States Dollar), EUR (Euro), CAD (Canadian Dollar), AUD (Australian Dollar), and GBP (British Pound). We accept all major debit and credit cards. Our payment system uses the latest security technology and is powered by Stripe, one of the world's most reliable payment companies. If you have any trouble paying by card, just contact us at [email protected]
Additionally, if you already have an active subscription in any of these currencies (USD, EUR, CAD, AUD, GBP), that currency will remain for subsequent subscriptions. You can change the currency at any time as long as you don't have any active subscriptions.
The local currency shown on the pricing page is based on the country of your IP address and is provided for reference only. The actual prices are in USD (United States Dollar). When you make a payment, the charge will appear on your card statement in USD, even if you see the equivalent amount in your local currency on our website. This means you cannot pay directly with your local currency.
Occasionally, a bank may decline the charge due to its fraud protection settings. We suggest reaching out to your bank initially to check if they are blocking our charges. Also, you can access the Billing Portal and change the card associated to make the payment. If these does not work and you need further assistance, please contact our team at [email protected]
Prices are determined by a recurring monthly or yearly subscription, depending on the chosen plan.
API calls are deducted from your plan based on successful requests. Each plan comes with a specific number of calls that you can make per month. Only successful calls, indicated by a Status 200 response, will be counted against your total. This ensures that failed or incomplete requests do not impact your monthly quota.
Zyla API Hub works on a recurring monthly subscription system. Your billing cycle will start the day you purchase one of the paid plans, and it will renew the same day of the next month. So be aware to cancel your subscription beforehand if you want to avoid future charges.
To upgrade your current subscription plan, simply go to the pricing page of the API and select the plan you want to upgrade to. The upgrade will be instant, allowing you to immediately enjoy the features of the new plan. Please note that any remaining calls from your previous plan will not be carried over to the new plan, so be aware of this when upgrading. You will be charged the full amount of the new plan.
To check how many API calls you have left for the current month, refer to the 'X-Zyla-API-Calls-Monthly-Remaining' field in the response header. For example, if your plan allows 1,000 requests per month and you've used 100, this field in the response header will indicate 900 remaining calls.
To see the maximum number of API requests your plan allows, check the 'X-Zyla-RateLimit-Limit' response header. For instance, if your plan includes 1,000 requests per month, this header will display 1,000.
The 'X-Zyla-RateLimit-Reset' header shows the number of seconds until your rate limit resets. This tells you when your request count will start fresh. For example, if it displays 3,600, it means 3,600 seconds are left until the limit resets.
Yes, you can cancel your plan anytime by going to your account and selecting the cancellation option on the Billing page. Please note that upgrades, downgrades, and cancellations take effect immediately. Additionally, upon cancellation, you will no longer have access to the service, even if you have remaining calls left in your quota.
You can contact us through our chat channel to receive immediate assistance. We are always online from 8 am to 5 pm (EST). If you reach us after that time, we will get back to you as soon as possible. Additionally, you can contact us via email at [email protected]
To give you the opportunity to experience our APIs without any commitment, we offer a 7-day free trial that allows you to make up to 50 API calls at no cost. This trial can be used only once, so we recommend applying it to the API that interests you the most. While most of our APIs offer a free trial, some may not. The trial concludes after 7 days or once you've made 50 requests, whichever occurs first. If you reach the 50 request limit during the trial, you will need to "Start Your Paid Plan" to continue making requests. You can find the "Start Your Paid Plan" button in your profile under Subscription -> Choose the API you are subscribed to -> Pricing tab. Alternatively, if you don't cancel your subscription before the 7th day, your free trial will end, and your plan will automatically be billed, granting you access to all the API calls specified in your plan. Please keep this in mind to avoid unwanted charges.
After 7 days, you will be charged the full amount for the plan you were subscribed to during the trial. Therefore, it's important to cancel before the trial period ends. Refund requests for forgetting to cancel on time are not accepted.
When you subscribe to an API free trial, you can make up to 50 API calls. If you wish to make additional API calls beyond this limit, the API will prompt you to perform an "Start Your Paid Plan." You can find the "Start Your Paid Plan" button in your profile under Subscription -> Choose the API you are subscribed to -> Pricing tab.
Payout Orders are processed between the 20th and the 30th of each month. If you submit your request before the 20th, your payment will be processed within this timeframe.
Nivel de Servicio:
100%
Tiempo de Respuesta:
14,015ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
3,231ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
819ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
655ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
470ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
223ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
1,430ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
583ms
Nivel de Servicio:
97%
Tiempo de Respuesta:
722ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
472ms