The Skin Analyze Advanced API provides a comprehensive analysis of facial skin conditions using state-of-the-art technology. Perfect for skincare applications, beauty platforms, and dermatology tools, this API evaluates facial images to detect a wide range of skin attributes, including skin color, texture, eyelid type, eye bags, dark circles, wrinkles, acne, and spots. By integrating the Skin Analyze Advanced API, you can offer users detailed insights into their skin health and condition, helping them make informed skincare decisions. Enhance user engagement, provide personalized skincare recommendations, and elevate your digital beauty solutions with our high-performance, scalable, and easy-to-integrate API designed to meet the needs of modern skincare analysis.
Functions | Description | Corresponding parameters |
---|---|---|
Face Detection | Detect face and position | face_rectangle |
Skin Analysis | Analyze skin condition.
|
result |
Analyze facial skin conditions with our Skin Analyze Advanced API, detecting skin color, texture, wrinkles, acne, spots, and more.
JPG
JPEG
Field | Required | Type | Scope | Description |
---|---|---|---|---|
image |
YES | file |
||
face_quality_control |
NO | integer |
|
Whether to restrict the quality of faces in incoming images.
|
return_rect_confidence |
NO | integer |
|
The confidence level of the area whether to return acne, occlusion, blemishes and moles.
|
return_maps |
NO | string |
|
Enter a comma-separated string containing the type of skin chromatography image to be returned. View Details |
return_maps
Request Example
red_area
Field Parsing
Field | Description | Return image information |
---|---|---|
red_area |
A red zone map that shows areas of redness caused by facial sensitivity and inflammation. |
Viewing Public Parameters and Error Codes
Field | Type | Scope | Description |
---|---|---|---|
warning |
array |
|
Interference factors affecting the calculation results.
|
face_rectangle |
object |
The position of the face rectangle box. | |
+top |
float |
The vertical coordinate of the pixel point in the upper-left corner of the rectangle box. | |
+left |
float |
The horizontal coordinate of the pixel point in the upper-left corner of the rectangle. | |
+width |
float |
The width of the rectangle box. | |
+height |
float |
The height of the rectangle box. | |
result |
object |
Results of face skin analysis. | |
+skin_color |
object |
Skin color test results. | |
++value |
integer |
|
Skin color.
|
++confidence |
float |
[0, 1] | Confidence. |
+skintone_ita |
object |
Returns skin color classification information based on the ITA (Individual Typology Angle) standard. NOTE | |
++ITA |
float |
[-90, 90] | Angle value. |
++skintone |
integer |
|
Classified according to the skin tone of ITA.
|
+skin_hue_ha |
object |
Returns skin tone classification information based on HA (Hue Angle). NOTE | |
++HA |
float |
[0, 90] | HA angle value. |
++skintone |
integer |
|
Classified according to HA's skin tone hue.
|
+skin_age |
object |
Skin age test results. | |
++value |
integer |
[0, 100) | Face skin age value. |
+left_eyelids |
object |
Results of the double eyelid test on the left eye. | |
++value |
integer |
|
Type.
|
++confidence |
float |
[0, 1] | Confidence. |
+right_eyelids |
object |
Results of the double eyelid test on the right eye. | |
++value |
integer |
|
Type.
|
++confidence |
float |
[0, 1] | Confidence. |
+eye_pouch |
object |
Eye bag test results. | |
++value |
integer |
|
With or without eye bags.
|
++confidence |
float |
[0, 1] | Confidence. |
+eye_pouch_severity |
object |
Severity of puffiness under the eyes (return when puffiness test result is 1) | |
++value |
integer |
|
Severity.
|
++confidence |
float |
[0, 1] | Confidence. |
+dark_circle |
object |
Dark circles test results. | |
++value |
integer |
|
Type of dark circles under the eyes.
|
++confidence |
float |
[0, 1] | Confidence. |
+forehead_wrinkle |
object |
Results of the head-lift test. | |
++value |
integer |
|
With or without headlines.
|
++confidence |
float |
[0, 1] | Confidence. |
+crows_feet |
object |
Fishtail test results. | |
++value |
integer |
|
With or without crow's feet.
|
++confidence |
float |
[0, 1] | Confidence. |
+eye_finelines |
object |
Results of the eye fine lines test. | |
++value |
integer |
|
The presence or absence of fine lines under the eyes.
|
++confidence |
float |
[0, 1] | Confidence. |
+glabella_wrinkle |
object |
Results of the interbrow line test. | |
++value |
integer |
|
With or without interbrow lines.
|
++confidence |
float |
[0, 1] | Confidence. |
+nasolabial_fold |
object |
Results of the forehead line test. | |
++value |
integer |
|
With or without lines.
|
++confidence |
float |
[0, 1] | Confidence. |
+nasolabial_fold_severity |
object |
Severity of the forehead lines (returned when the result of the forehead line test is 1) | |
++value |
integer |
|
Severity.
|
++confidence |
float |
[0, 1] | Confidence. |
+skin_type |
object |
Skin texture test results. | |
++skin_type |
integer |
|
Type.
|
++details |
object |
The confidence level of each classification. | |
+++0 |
object |
Oily skin information. | |
++++value |
integer |
|
Oily skin.
|
++++confidence |
float |
Confidence. | |
+++1 |
object |
Dry skin information. | |
++++value |
integer |
|
Dry skin.
|
++++confidence |
float |
Confidence. | |
+++2 |
object |
Neutral skin information. | |
++++value |
integer |
|
Neutral skin.
|
++++confidence |
float |
Confidence. | |
+++3 |
object |
Combination skin information. | |
++++value |
integer |
|
Combination skin.
|
++++confidence |
float |
Confidence. | |
+pores_forehead |
object |
Forehead pore test results. | |
++value |
integer |
|
With or without enlarged pores.
|
++confidence |
float |
[0, 1] | Confidence. |
+pores_left_cheek |
object |
Results of the left cheek pore test. | |
++value |
integer |
|
With or without enlarged pores.
|
++confidence |
float |
[0, 1] | Confidence. |
+pores_right_cheek |
object |
Results of the right cheek pore test. | |
++value |
integer |
|
With or without enlarged pores.
|
++confidence |
float |
[0, 1] | Confidence. |
+pores_jaw |
object |
Chin pore test results. | |
++value |
integer |
|
With or without enlarged pores.
|
++confidence |
float |
[0, 1] | Confidence. |
+blackhead |
object |
Blackhead test results. | |
++value |
integer |
|
Severity.
|
++confidence |
float |
[0, 1] | Confidence. |
+acne |
Object |
Acne test results. | |
++rectangle |
array |
The location of each pimple box. | |
+++width |
float |
Width. | |
+++height |
float |
Height. | |
+++left |
float |
The distance from the leftmost part of the picture. | |
+++top |
float |
The distance from the topmost edge of the image. | |
++confidence |
array |
If return_rect_confidence is 1, the confidence that each rectangular region is discriminated as a positive case is returned. |
|
+mole |
Object |
Mole test results. | |
++rectangle |
array |
The position of each mole frame. | |
+++width |
float |
Width. | |
+++height |
float |
Height. | |
+++left |
float |
The distance from the leftmost part of the picture. | |
+++top |
float |
The distance from the topmost edge of the image. | |
++confidence |
array |
If return_rect_confidence is 1, the confidence that each rectangular region is discriminated as a positive case is returned. |
|
+closed_comedones |
Object |
Closure returns the result. | |
++rectangle |
array |
The position of each closure frame. | |
+++width |
float |
Width. | |
+++height |
float |
Height. | |
+++left |
float |
The distance from the leftmost part of the picture. | |
+++top |
float |
The distance from the topmost edge of the image. | |
++confidence |
array |
If return_rect_confidence is 1, the confidence that each rectangular region is discriminated as a positive case is returned. |
|
+skin_spot |
Object |
Spot detection results. | |
++rectangle |
array |
The position of each spot box. | |
+++width |
float |
Width. | |
+++height |
float |
Height. | |
+++left |
float |
The distance from the leftmost part of the picture. | |
+++top |
float |
The distance from the topmost edge of the image. | |
++confidence |
array |
If return_rect_confidence is 1, the confidence that each rectangular region is discriminated as a positive case is returned. |
|
+face_maps |
Object |
Returns the skin chromatography visualization image set in the entry (return_maps ). |
|
++red_area |
base64 |
Red zone map. jpeg images for base64. | |
+sensitivity |
Object |
The sensitivity of the human face within the photo. This return value must be used with the red area map, you need to set the return red area map ("red_area") in the input parameter return_maps first. |
|
++sensitivity_area |
float |
[0, 1] | Sensitive redness areas account for the proportion of cheeks and T-zone. |
++sensitivity_intensity |
float |
[0, 100] | The intensity of redness in sensitive areas. |
skintone_ita
ITA (Individual Typology Angle) is an international standard for skin color, which is a method to classify skin color by measuring the color attributes of skin color Lab space. The method is strongly dependent on ambient light, we recommend using flash to take HD face photos for uploading and processing, the ITA angle value measured in natural light or dark environment may not be allowed or abnormal.
According to the data taken by the rear flash of the phone, the current skin color classification reference.
skintone |
Scope | Description |
---|---|---|
0 |
56 < ITA < 90 |
Very light. |
1 |
43 < ITA <= 56 |
Light. |
2 |
36 < ITA <= 43 |
Intermediate. |
3 |
20 < ITA <= 36 |
Tan. |
4 |
10 < ITA <= 20 |
Brown. |
5 |
-90 < ITA <= 10 |
Dark. |
6 |
Other | Abnormal color values that may be caused by weak lighting conditions or overexposure. |
You can also use the returned ITA value to define your classification based on the returned ITA angle at the time of access.
skin_hue_ha
HA (Hue Angle) is an international standard for skin color, which is a method to classify skin color by measuring the color attributes of skin color Lab space. The method is strongly dependent on ambient light, we recommend using flash to take HD face photos for uploading and processing, the HA angle value measured in natural light or dark light environment may not be allowed or abnormal.
According to the data taken by the rear flash of the phone, the current skin tone classification reference.
skintone |
Scope | Description |
---|---|---|
0 |
49 < HA <= 90 |
Yellowish. |
1 |
46 <= HA < 49 |
Neutral. |
2 |
10 <= HA < 46 |
Reddish. |
3 |
Other | Abnormal hue values may be caused by abnormal ambient light tones or weak light environment or overexposure. |
You can also use the returned ITA value to define your classification based on the returned ITA angle at the time of access.
Skin Analyze Advanced - Características del Endpoint
Objeto | Descripción |
---|---|
face_quality_control |
Opcional Whether to restrict the quality of faces in incoming images. `0`: No face quality control is performed, and skin measurement results are returned as long as the face can be detected. `1`: Perform face quality control, if the face quality does not pass it will prompt an error. |
return_rect_confidence |
Opcional The confidence level of the area whether to return acne, occlusion, blemishes and moles. `0`: No regional confidence is returned. `1`: Returns the regional confidence. |
Cuerpo de la Solicitud |
[Requerido] Archivo Binario |
{
"request_id": "",
"log_id": "",
"error_code": 0,
"error_code_str": "",
"error_msg": "",
"error_detail": {
"status_code": 200,
"code": "",
"code_message": "",
"message": ""
},
"warning": [],
"face_rectangle": {
"top": 0,
"left": 0,
"width": 0,
"height": 0
},
"result": {
"skin_color": {
"value": 0,
"confidence": 0.89
},
"skin_age": {
"value": 9
},
"left_eyelids": {
"value": 0,
"confidence": 0.89
},
"right_eyelids": {
"value": 0,
"confidence": 0.89
},
"eye_pouch": {
"value": 0,
"confidence": 0.89
},
"dark_circle": {
"value": 0,
"confidence": 0.89
},
"forehead_wrinkle": {
"value": 0,
"confidence": 0.89
},
"crows_feet": {
"value": 0,
"confidence": 0.89
},
"eye_finelines": {
"value": 0,
"confidence": 0.89
},
"glabella_wrinkle": {
"value": 0,
"confidence": 0.89
},
"nasolabial_fold": {
"value": 0,
"confidence": 0.89
},
"skin_type": {
"skin_type": 0,
"details": {
"0": {
"value": 1,
"confidence": 0.89
},
"1": {
"value": 1,
"confidence": 0.89
},
"2": {
"value": 0,
"confidence": 0.01
},
"3": {
"value": 0,
"confidence": 0.01
}
}
},
"pores_forehead": {
"value": 0,
"confidence": 1
},
"pores_left_cheek": {
"value": 0,
"confidence": 1
},
"pores_right_cheek": {
"value": 0,
"confidence": 1
},
"pores_jaw": {
"value": 0,
"confidence": 1
},
"blackhead": {
"value": 0,
"confidence": 1
},
"acne": {
"rectangle": [
{
"width": 3,
"top": 17,
"height": 1,
"left": 35
},
{
"width": 4,
"top": 20,
"height": 1,
"left": 35
}
]
},
"closed_comedones": {
"rectangle": [
{
"width": 3,
"top": 17,
"height": 1,
"left": 35
},
{
"width": 4,
"top": 20,
"height": 1,
"left": 35
}
]
},
"mole": {
"rectangle": [
{
"width": 3,
"top": 17,
"height": 1,
"left": 35
},
{
"width": 4,
"top": 20,
"height": 1,
"left": 35
}
]
},
"skin_spot": {
"rectangle": [
{
"width": 3,
"top": 17,
"height": 1,
"left": 35
},
{
"width": 4,
"top": 20,
"height": 1,
"left": 35
}
]
}
}
}
curl --location 'https://zylalabs.com/api/4442/skin+analyze+advanced+api/5455/skin+analyze+advanced' \
--header 'Content-Type: application/json' \
--form 'image=@"FILE_PATH"'
Encabezado | Descripción |
---|---|
Autorización
|
[Requerido] Debería ser Bearer access_key . Consulta "Tu Clave de Acceso a la API" arriba cuando estés suscrito. |
Sin compromiso a largo plazo. Mejora, reduce o cancela en cualquier momento.
The Skin Analyze Advanced API provides a comprehensive analysis of facial skin conditions using state-of-the-art technology. Perfect for skincare applications, beauty platforms, and dermatology tools, this API evaluates facial images to detect a wide range of skin attributes, including skin color, texture, eyelid type, eye bags, dark circles, wrinkles, acne, and spots. By integrating the Skin Analyze Advanced API, you can offer users detailed insights into their skin health and condition, helping them make informed skincare decisions.
Dermatology Clinics: Providing advanced diagnostic tools for dermatologists to assess and monitor complex skin conditions. Skincare Product Development: Assisting cosmetic companies in developing high-precision skincare products by analyzing detailed skin characteristics. High-End Beauty Salons and Spas: Offering clients advanced skin analysis services to tailor premium skincare treatments. Personal Skincare Apps: Integrating sophisticated skin analysis features into consumer apps for precise, personalized skincare recommendations. Aesthetic Medicine: Aiding practitioners in planning and assessing the outcomes of cosmetic procedures.
High Precision: Utilizes cutting-edge technology to deliver extremely accurate and detailed analysis of various skin parameters. Comprehensive Diagnostics: Offers in-depth insights into skin conditions, including underlying issues that basic analysis might miss. Customization: Provides highly personalized skincare recommendations and treatment plans based on detailed skin profiles. Professional-Grade Tools: Features advanced tools suitable for professional use in medical and high-end cosmetic environments. Real-Time Analysis: Delivers immediate, detailed feedback, enabling quick decision-making for treatments and product recommendations.
Yes, we do have more detailed [API documentation](https://www.ailabtools.com/doc/ai-portrait/analysis/skin-analysis-advanced/api-marketplace) available. You can access it on our website or by contacting our support team for assistance.
Dermatologists and Advanced Skincare Professionals: Experts who require sophisticated tools for in-depth analysis and precise diagnosis of complex skin conditions. Medical Researchers and Clinical Scientists: Individuals conducting high-level research in dermatology and skin health, needing advanced analysis for their studies. Aesthetic and Cosmetic Surgeons: Professionals who perform skin-related surgical procedures and need detailed skin analysis to plan and execute treatments effectively. High-End Skincare Clinics and Spas: Facilities offering premium skincare services that use advanced technology to provide personalized and effective treatments for their clients.
The API returns detailed analysis data on facial skin conditions, including attributes like skin color, texture, wrinkles, acne, spots, and more. Each analysis provides specific metrics such as skin age, sensitivity levels, and the presence of various skin features.
Key fields in the response include `skin_color`, `skin_age`, `left_eyelids`, `right_eyelids`, `eye_pouch`, and `dark_circle`. Each field contains subfields like `value` and `confidence`, providing insights into skin conditions and the reliability of the analysis.
The response data is structured in a JSON format, with a top-level object containing `request_id`, `log_id`, and `result`. The `result` object includes detailed analysis results categorized by skin attributes, each with its own metrics and confidence levels.
Parameters include `image` (required), `face_quality_control` (optional), `return_rect_confidence` (optional), and `return_maps` (optional). Users can customize requests by specifying these parameters to control the quality checks and types of visual data returned.
The API provides information on skin color classification, skin age, eyelid types, presence of eye bags, dark circles, wrinkles, acne, blackheads, and enlarged pores. It also offers visual data like red area maps for sensitive skin regions.
Users can analyze the returned data to assess skin health and tailor skincare recommendations. For instance, the `skin_color` field can guide product choices, while `eye_pouch` and `dark_circle` data can inform treatment options for specific concerns.
The API employs face quality control measures, ensuring that only high-quality images yield reliable results. Users can enable quality checks to filter out low-quality images, enhancing the accuracy of the skin analysis.
Typical use cases include personalized skincare recommendations in apps, diagnostic support in dermatology clinics, product development for skincare brands, and enhancing user engagement in beauty platforms through detailed skin analysis insights.
Zyla API Hub es como una gran tienda de APIs, donde puedes encontrar miles de ellas en un solo lugar. También ofrecemos soporte dedicado y monitoreo en tiempo real de todas las APIs. Una vez que te registres, puedes elegir qué APIs quieres usar. Solo recuerda que cada API necesita su propia suscripción. Pero si te suscribes a varias, usarás la misma clave para todas, lo que hace todo más fácil para ti.
Los precios se muestran en USD (dólar estadounidense), EUR (euro), CAD (dólar canadiense), AUD (dólar australiano) y GBP (libra esterlina). Aceptamos todas las principales tarjetas de débito y crédito. Nuestro sistema de pago utiliza la última tecnología de seguridad y está respaldado por Stripe, una de las compañías de pago más confiables del mundo. Si tienes algún problema para pagar con tarjeta, contáctanos en [email protected]
Además, si ya tienes una suscripción activa en cualquiera de estas monedas (USD, EUR, CAD, AUD, GBP), esa moneda se mantendrá para suscripciones posteriores. Puedes cambiar la moneda en cualquier momento siempre que no tengas suscripciones activas.
La moneda local que aparece en la página de precios se basa en el país de tu dirección IP y se proporciona solo como referencia. Los precios reales están en USD (dólar estadounidense). Cuando realices un pago, el cargo aparecerá en tu estado de cuenta en USD, incluso si ves el monto equivalente en tu moneda local en nuestro sitio web. Esto significa que no puedes pagar directamente en tu moneda local.
Ocasionalmente, un banco puede rechazar el cargo debido a sus configuraciones de protección contra fraude. Te sugerimos comunicarte con tu banco primero para verificar si están bloqueando nuestros cargos. También puedes acceder al Portal de Facturación y cambiar la tarjeta asociada para realizar el pago. Si esto no funciona y necesitas más ayuda, por favor contacta a nuestro equipo en [email protected]
Los precios se determinan mediante una suscripción recurrente mensual o anual, dependiendo del plan elegido.
Las llamadas a la API se descuentan de tu plan en base a solicitudes exitosas. Cada plan incluye una cantidad específica de llamadas que puedes realizar por mes. Solo las llamadas exitosas, indicadas por una respuesta con estado 200, se contarán en tu total. Esto asegura que las solicitudes fallidas o incompletas no afecten tu cuota mensual.
Zyla API Hub funciona con un sistema de suscripción mensual recurrente. Tu ciclo de facturación comenzará el día en que compres uno de los planes de pago, y se renovará el mismo día del mes siguiente. Así que recuerda cancelar tu suscripción antes si quieres evitar futuros cargos.
Para actualizar tu plan de suscripción actual, simplemente ve a la página de precios de la API y selecciona el plan al que deseas actualizarte. La actualización será instantánea, permitiéndote disfrutar inmediatamente de las funciones del nuevo plan. Ten en cuenta que las llamadas restantes de tu plan anterior no se transferirán al nuevo plan, por lo que debes considerar esto al actualizar. Se te cobrará el monto total del nuevo plan.
Para verificar cuántas llamadas a la API te quedan en el mes actual, revisa el campo 'X-Zyla-API-Calls-Monthly-Remaining' en el encabezado de la respuesta. Por ejemplo, si tu plan permite 1,000 solicitudes por mes y has usado 100, este campo mostrará 900 llamadas restantes.
Para ver el número máximo de solicitudes a la API que permite tu plan, revisa el encabezado de la respuesta 'X-Zyla-RateLimit-Limit'. Por ejemplo, si tu plan incluye 1,000 solicitudes por mes, este encabezado mostrará 1,000.
El encabezado 'X-Zyla-RateLimit-Reset' muestra el número de segundos hasta que tu límite se restablezca. Esto te indica cuándo tu conteo de solicitudes se reiniciará. Por ejemplo, si muestra 3,600, significa que faltan 3,600 segundos para que el límite se restablezca.
Sí, puedes cancelar tu plan en cualquier momento desde tu cuenta, seleccionando la opción de cancelación en la página de Facturación. Ten en cuenta que las actualizaciones, degradaciones y cancelaciones tienen efecto inmediato. Además, al cancelar ya no tendrás acceso al servicio, incluso si te quedaban llamadas en tu cuota.
Puedes contactarnos a través de nuestro canal de chat para recibir asistencia inmediata. Siempre estamos en línea de 8 a. m. a 5 p. m. (EST). Si nos contactas fuera de ese horario, te responderemos lo antes posible. Además, puedes escribirnos por correo electrónico a [email protected]
Para darte la oportunidad de probar nuestras APIs sin compromiso, ofrecemos una prueba gratuita de 7 días que te permite realizar hasta 50 llamadas a la API sin costo. Esta prueba solo se puede usar una vez, por lo que recomendamos aplicarla a la API que más te interese. Aunque la mayoría de nuestras APIs ofrecen prueba gratuita, algunas pueden no hacerlo. La prueba finaliza después de 7 días o cuando realices 50 solicitudes, lo que ocurra primero. Si alcanzas el límite de 50 solicitudes durante la prueba, deberás "Iniciar tu Plan de Pago" para continuar haciendo solicitudes. Puedes encontrar el botón "Iniciar tu Plan de Pago" en tu perfil bajo Suscripción -> Elige la API a la que estás suscrito -> Pestaña de Precios. Alternativamente, si no cancelas tu suscripción antes del día 7, tu prueba gratuita finalizará y tu plan se cobrará automáticamente, otorgándote acceso a todas las llamadas a la API especificadas en tu plan. Ten esto en cuenta para evitar cargos no deseados.
Después de 7 días, se te cobrará el monto total del plan al que estabas suscrito durante la prueba. Por lo tanto, es importante cancelar antes de que finalice el periodo de prueba. No se aceptan solicitudes de reembolso por olvidar cancelar a tiempo.
Cuando te suscribes a una prueba gratuita de una API, puedes realizar hasta 50 llamadas. Si deseas realizar más llamadas después de este límite, la API te pedirá que "Inicies tu Plan de Pago". Puedes encontrar el botón "Iniciar tu Plan de Pago" en tu perfil bajo Suscripción -> Elige la API a la que estás suscrito -> Pestaña de Precios.
Las Órdenes de Pago se procesan entre el día 20 y el 30 de cada mes. Si envías tu solicitud antes del día 20, tu pago será procesado dentro de ese período.
Nivel de Servicio:
100%
Tiempo de Respuesta:
823ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
0ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
0ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
114ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
0ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
0ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
275ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
0ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
7.847ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
22ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
0ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
1.833ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
4.045ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
1.081ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
0ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
1.644ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
2.183ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
168ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
1.450ms
Nivel de Servicio:
100%
Tiempo de Respuesta:
1.307ms